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1. Introduction

Data synchronization is an important aspect in the operation of the trigger and readout systems of
the AGATA experiment. A high increase in efficiency with respect to current spectrometers is
expected in AGATA by means of online gamma ray tracking and pulse shape analysis (PSA).
Tracking and PSA require the concurrent digitization of preamplifier signals of the 36 fold
segmented Ge crystals composing the array. Therefore, the design of the front-end readout and
level-1 (L1) trigger in AGATA follows a synchronous pipeline model: the detector data are stored
in pipeline buffers at the global AGATA frequency, waiting the global L1 decision. The L1 latency
must be constant and shall match the pipeline buffer length. The whole system behaves
synchronously and synchronization at different levels and in different contexts has to be achieved
and monitored for proper operation of the system. In order to fix definitions, we list in Table 1 the
various synchronization types that we refer to.

Type Description

Sampling Synchronization Synchronization of the detector signals with the
clock phase

Serial Link Synchronization Recovery of parallel data words from the serial bit
stream.

Trigger Requests Alignment | Alignment of trigger data at the input of the trigger
pipeline processor

L1 Validations Synchronization of L1A signal with data in the
Synchronization readout pipelines
Event Synchronization Assignment of global clock and event number to

data fragments in the DAQ path

Table 1: Synchronization types.

In AGATA each crystal is considered as a separate entity and from the point of view of the Data
Acquisition System (DAQ), the whole detector may be considered as the aggregation of
synchronized data supplied by individual crystals, possibly disciplined by a global trigger primitive.
Each crystal is composed of 36 segments and a central core contact, all individually readout.

The data from the core contact are processed for event detection and hence, a level 1 trigger
request or local trigger generation. The choice between the two behaviors is done upon
configuration, the former corresponding to an effective way to reduce front-end data rates in cases
where anyone of the stages of the readout chain is unable to perform at the actual data throughput.
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2. The Front-end Model

A columnar model of the data flow concerning each individual segment of a crystal can be
represented as in fig. 1. This sort of digital pipe highlights the flow starting from the digitizer of a
single channel down to the Pulse Shape Analysis farm where position estimation of gamma ray
interactions is carried out.

—‘—L__I Digitizers

Digitizers link

h 4

1

Local Level Trigger

@
Local Level Processing
Global Trigger
i PSA interface

Switching network

PSA farm

Fig. 1 - The AGATA readout column

The model shows two types of trigger interactions with the flow: a local trigger signal generated by
central core processing and, possibly, a global trigger L1 accept signal generated externally from a
central trigger processor. To ease the solution of the problems posed by the different
synchronization levels specified before, AGATA shares a global time reference supplied by a
global trigger and synchronization control system (GTS) and distributed by means of a network of
optical fibres to the front-end electronics of each crystal. Fig. 2 shows the aggregate model of a
front-end system and its interface to the GTS.
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The following functionalities will be described in terms of behaviour.

1: Extraction of the physical signal from the sub-detector and transformation to digital data.

The transformation includes any needed shaping or processing. If the detector is the central
core contact of the crystal, the data are made available to the Trigger Primitive Generator

(TPG).

2: Delay on the data during the trigger level-1 latency.

This delay can be implemented in various ways : storage with pointers management or a
simple pipeline shifting synchronously with the global clock for example. The delay value will
be the sum of the decision time of the trigger logic and the propagation time. Hence, the

delay can vary depending on the location of the front-end.

3: Data selection and tagging.

On the result of level-1 trigger process, data corresponding to that event must be selected
from the pipeline. A data frame (data recorded during several consecutive clock cycles) is to
be considered and not a single data. Corresponding global clock and event numbers must be
associated to those data to tag them.

4: Derandomization.
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Once selected by a level-1 accept, the frame is saved in a multi-event buffer. This buffer
stage is needed to allow a frequency derandomization between the level-1 rate and the
readout process. The size of the multi-event buffer has to be defined in order to guarantee
the smallest buffer-overflow probability possible. A FIFO-like behavior is needed for this
buffer.

5: First level merge.

A given number of derandomizer buffers is attached to a merge engine that will readout data
associated to a particular event. The engine produces a so called "Front End Event".

6: Front End Event formatting.
The data format of the Front End Event must include the global clock counter and event
numbers to allow later data misalignment search [1]. The presence of a Front End identifier
could also be required.

7: Transmission to FED

The FE Event is then sent out to the Front-end driver (FED) via a data link. The media and
protocol used for this link should be a DAQ standard.

8: Monitoring of the derandomizer filling level
If the readout scheme is such that every derandomizer has the same status at the same time
(after readout completion), this case is simple and the solution is straightforward (see below).
If the readout scheme is such that every derandomizer can have a different status (e.g.
variable event size), warning or worst status must be included to the "Front End Event" for
later processing at the FED level.

9: Test facilities

To have maximum efficiency in the problem detection, they have to be implemented as high
as possible in the readout chain.

10: Processing.

Data processing (e.g. lossless compression) can also be needed in the front end. Location
and exact functionality of the processing is to be defined.
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3. GTS Functionalities

From the logical description of the front-end operation given above it turns out that a certain
number of global time referenced signals are needed. Among them:

common clock

global clock counter

global event counter

trigger controls:
i. Throttling of the L1 validation signal
ii. Fast commands (fast reset, initialization, etc.)
iii. Fast monitoring feedback from the crystals
iv. Calibration and test trigger sequence commands
v. Monitor of dead time

5. Trigger requests

6. Error reports

PwbNE

In AGATA, the transport medium of all these signals is shared by use of serial optical bidirectional
links connecting the front-end electronics of each crystal with a central global trigger and
synchronization control unit in a tree-like structure, thus actually merging together the three basic
functionalities of synchronization distribution, global control and trigger processing.

More in detail:

1: Common clock

This is a 100 MHz digital clock supplied by a central timing unit (possibly GPS disciplined)
and used to clock the high speed optical transceivers reaching the front-end electronics of
every crystal. At the crystal receiving side the clock is reconstructed and filtered for jitter. The
clock signals of each crystal may be equalized for delay and phase, thus accounting for
different fibre lengths and different crystal locations in the array.

2: Global clock counter
A 48 bit digital pattern used to tag event fragments before Front-end buffer formatting. The
pattern is the actual count of the global clock. It will be used by PSA and global event
builders to merge the event fragments in one single event.

3: Global event counter
A 16 bit digital pattern used to tag event fragments before Front-end buffer formatting. The
pattern is the actual count of the L1 validations.

4: Trigger controls
The Trigger Control must guarantee that sub-systems are ready to receive every L1 Accept
delivered. This is essential to prevent buffers overflows and/or trigger signals missed when

the crystals are not ready to receive them. In either case, the consequence would be a loss
of synchronization between event fragments.
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Warning signals sent from the crystal through the GTS network, indicating that some of its
buffers are almost full, may be received centrally. However this feedback signal can take few
microseconds to reach the Trigger Control, which meanwhile could have delivered a number
of L1A signals that originate a buffer overflow. This problem is particularly acute in the front-
end derandomizers which have a small storage capacity.

According to the front-end electronic logical model, the front-end derandomizers after the L1
latency pipelines are the first devices to overflow when the L1A rate is too high. Space and
power constraints in the front-ends imply small derandomizer depth and hence these queues
are very sensitive to bursty L1A. In general, the derandomizers behave like a first-in-first-out
queue: the input/output frequency is directly the L1A rate. The overflow probability is strongly
dependent on the ratio between the service time and the buffer depth. The consequence
would be of resetting the whole front-end electronics which would cause a severe loss of
efficiency in the DAQ. All front-end derandomizers behave identically. Therefore, their
occupancy depend only on the L1A rate and on the service time. A state machine receiving
the L1A signals can emulate the de-randomizer behavior and determine its occupancy at
each new L1A. If a new L1A is estimated to cause a de-randomizer overflow, this L1A is
throttled. In general, it would be very difficult to guarantee that the state machine reproduces
exactly the buffer status at every time. However in the present case the L1A accept signals
are synchronous with the clock and the write and read latencies are measured in multiples of
the clock period. It is this time quantization that makes the de-randomizer emulation really
possible. A complementary solution to the same problem is to oblige the delivery of L1A
signals to comply with a set of trigger rules. These rules take the general form 'no more than
n L1A signals in a given time interval’. Suitable rules, inducing a negligible dead time, would
minimize the buffer overflow probability.

5: Trigger request

The central core contact signal might be considered as the overlap of all the signals in the
segments of a crystal; in fact a deposit of energy in any of the segment will induce a signal in
the central core, thus acting as a sort of analog sum of single segment signals. Therefore, the
central core can be processed for event localization in a crystal. Suitable algorithms for this
task have been identified [] and tested. The outcome of the algorithm may issue a trigger
request to the central trigger processor by asserting this signal which is transmitted via the
high speed serial links of the GTS network upwards to the central trigger unit.

All the trigger requests collected from the crystals at each global clock cycle form a pattern
that can be processed centrally for multiplicity or coincidence with ancillary detectors. The
result of this processing stage constitutes the L1 validation.

6: Error reports

Abnormal conditions as buffer overflows, local faults, built-in self tests, etc. can be reported
centrally for proper corrective actions.
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4. Front-end Simulation

The Front End System presents intrinsic inefficiencies by design, in the sense that all level-1
triggers might not be processed. The two major causes of these inefficiencies are the Front End
System dead time following a trigger, and the limited size of the Front End Channel derandomizing
buffers.

For the complete readout chain of AGATA, a maximum acceptable inefficiency has to be defined: a
value in the range of a few percents at 1 MHz trigger rate has to be achieved. Unfortunately, this
trigger rate is not known as an absolute worst case, hence, to have a good safety margin for
system design, we should regard it as the variance of a Gaussian process and take the 6c value
as our absolute worst case.

4.1 Front-end system dead time

A dead time is induced after level-1 trigger reception by the hardware architecture of the Local
Level Processing electronics. This dead time is due mainly to the time needed to read a frame out
of the front-end fifo’'s and to the time needed to sink the synchronization tags from the GTS
interface mezzanine. As a consequence, triggers occurring during this period cannot be processed,
and corresponding event data are lost.

An estimation of the inefficiency induced by the Local Level Processing hardware can be
calculated with the following assumptions. Let d be the dead time, r the trigger rate. If we consider
a Poisson law for the trigger distribution, the probability of one event (at least) occurring during the
dead time is:

P =1—[e‘”’x(r%'o)J =1-e™ ~rd

assuming that rd is small relative to 1.

Hence, at the level of each crystal, 1 microsecond of dead time after local trigger generation will
account for 5% of local efficiency loss at 50 KHz trigger rate. Global system inefficiency due to
hardware dead time is computed in the following way. Let's remember how a global trigger is
usually generated in AGATA: local triggers generated at the crystal level get routed to a central
trigger processor which is configured for asserting a trigger validation whenever a programmable
condition is met. The simplest of these conditions is a multiplicity, e.g. pretending that more than
one (usually M =[2..30]) trigger requests are asserted in the same time window.

It's easy to realize that, at multiplicity M>1, dead time of one crystal electronics induces a dead
time for the whole system. For sake of simplicity, let's suppose M=2. An event firing crystals, say,
no. 1 and 2 gets validated and those crystals enter a 1 microsecond dead time. Any subsequent
event firing any two crystals will be validated only if crystals no.1 and 2 are not interested by the
new event. The probability of the new event firing crystals no. 1 or 2 is computed by knowing the
number of times that crystals no. 1 or 2 are present in all possible combinations without repetition
of any two crystals out of 180 (this is the number of HPGe detectors foreseen for AGATA).

Let's take N = the total number of crystals, M = multiplicity: the total number T of combinations
without repetition of any M crystals out of N is the well know formula:

(W)
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The number of times K that one crystal is present in all possible combinations without repetition of
any M crystals out of N is given by :

T (N —1)!
K=l—|=

N | (M-D(N-M)!

M

So, the probability of the new event firing a crystal that entered a dead time is given by:

M 2
_ K/ _
&—Mx%_N

It's nice to note that, already at multiplicity M=13, with N=180, it's almost certain that a new event
occurring less than one microsecond after the preceding will hit a crystal whose electronics will not
catch it.

Hence, the global system inefficiency due to crystal dead time is obtained as:

2
p_pxp, ~ M

forMS\/Wor
P=RxP,~rd

foer)\/W

4.2 The Derandomizer Size

The size allocated to the front-end derandomizing buffers is a crucial issue. On one hand, available
space on silicon and power budget lead to minimize the size. On the other hand, data loss
probability due to buffer overflow has to be minimized to avoid misalignment in the DAQ, thus
inducing large inefficiencies caused by long recovery times. This constraint leads to maximize the
derandomizer size.
The model used for this study is mainly defined by 3 parameters:
= the mean time between two triggers "t", i.e. the inverse of the trigger rate
= the fifo's service time "s", i.e. the minimum time between two consecutive read access to
the fifo’s.
= The fifo depth "d". This parameter is expressed in terms of events (a constant event size is
assumed).
With this model, P(n) , the probability of having n events waiting in the fifo is computed. P(n=d), is
the probability for the fifo to be full and also the derandomizer inefficiency.

To analyze the contribution of these parameters to the global system inefficiency a simulation
environment has been setup. We made a faithful description of the Local Level Processing
hardware and the GTS interface mezzanine operations by means of the SystemC hardware
description language [ ]. Being both synchronous with the GTS distributed global clock, a cycle
accurate description of the local trigger generation, GTS handshake mechanism, fifo’s storage and
readout and trigger matching procedure has been easy to achieve and deploy.
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4.3 The Simulation Environment
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Fig. 3 - Top level view of the simulation environment

Figure 3 shows the top level block diagram of the simulation environment. The front-end system is
comprised of a GTS mezzanine interface, a primitive trigger generator which analyzes sampled
data from central contact of each crystal for local trigger generation, a carrier box collecting data
from twelve crystal segments and a readout bus to which a readout cpu and a global memory are
connected. The model is sourced with real data taken from 24-fold and 36-fold segmented
prototype crystals, illuminated with different radioactive sources.

It is worth noting that the simulation environment is a coded implementation of the front-end model
depicted in fig. 2.

4.3.1 The carrier

The carrier box has the complex structure shown in fig. 4: two mezzanines (M1 and M2) take care
of computing the energy and storing the rising edge samples of each event from six crystal
segments each. Upon request of the readout engine box, on a per event basis these data are
stored in a dual port ram after being tagged with a timestamp and event nhumber taken from the
‘evcount_fifo’ and ‘tstamp_fifo’. A Direct Memory Access (DMA) controller box synchronizes with
the Readout Engine box by means of two fifo’s (ro2dma and dma2ro fifo’s) and sinks event data
from the dual port ram into its bus port.
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Fig. 4 — Block diagram of the “Carrier” box of fig. 3.

The mezzanines M1 and M2 are a six-fold instance of the block diagram of a single channel,

shown in fig. 5.
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Fig. 5 — Block diagram of the “Mezzanine” box of fig. 4.

4.3.2 The Channel Structure

At the heart of the simulation code is the channel structure, as shown in fig. 6. Samples from the
segment contact enter both a delay line and a Moving Window Deconvolution (MWD) box that
computes the energy of the pulse and stores the value in a fifo (en_fifo) for later readout. Upon
arrival of a local trigger, a pulse controller box (pulse_cntr) moves a predefined number of samples

from the delay line into an event fifo (ev_fifo), thus isolating the rising edge of the pulse.
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Fig. 6 — The channel structure.

4.3.3 Trigger Matching

The arrival of a trigger validation instead enables the storage of the current GTS time into a

timestamp fifo (tstamp_fifo) to be used by the trigger matching engine.

The trigger matching engine is in charge of correlating the trigger validations stored in the
tstamp_fifo with candidate local triggers that have triggered the storage of samples into the ev_fifo.
In other words, trigger matching is a time match between a trigger validation time tag and the local

trigger time tags themselves. The idea is shown in figure 7.
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Fig. 7 — Trigger matching technique.

Local triggers and subsequent trigger validations differ in time for a number of reasons. The most
obvious is that the latters are the result of logical operations performed on the formers, so they are
intrinsically time ordered. There is a constant time difference between the two due to hardware
infrascture that transports local trigger signals to a central trigger processor for validation
generation. There is also a variable time difference between the two due to the mechanism of local
trigger generation which depends somehow on the amount of charge induced by gamma
interaction in each single crystal. As a consequence, the trigger matching procedure must be done
inside a window, the match window, as show in the following figure.

matched hits

rejected A

et ot oot
H time
| match window
D
! trigger latency ?
i trigger input

Fig. 8 — Window based Trigger matching.

At the time of a validation arrival (‘trigger input’ in fig. 8), from the current value of GTS clock a
trigger latency value is subtracted. The result is an estimate of the time at which the candidate
local triggers have happened. From that time on, for a period that equals the match window, all
events whose time tags fall inside the window get validated and will be moved in the readout fifo.
The events whose time tags fall before the time window can be discarded from the input fifo
because they have no chance to be validated in future. Those events instead, with time tags that
are younger than the match window will remain in place due to the possibility of being validated at
a later time.
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4.3.4 Simulation Results

5. Global Timestamp Protocol

To be filled ...

6. Global Trigger Algorithms

To be filled ...

M. Bellato — INFN Padova
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7. Implementation

AGATA GTS will have a tree topology, originating from the root node that will therefore act at the
same time as the source of all global information (clock, timestamps, commands, L1 validations)
and the sink of all trigger requests, fast monitoring signals and service requests coming from the
crystals.

GTS Supervisor

GTS fanin-fanout

GTS fanin-fanout
oo Detector 180

Fig. 9 — GTS topology

Detector K LX) Detector K+M

To solve the problems of building a bi-directional, high capacity and high speed tree network that
drives hundreds of nodes displaced several tenths of meters apart, a certain number of
technological issues must be addressed. Among them, the fan-out of a source synchronous
transmission, noise immunity, low error rate and throughput. Modern serial transceivers, as used in
commercial high speed telecom networks, can solve part of them. Simply stated, these devices
basically transfer a digital pattern from one side of a transmission channel to the other (and
viceversa) by serializing the pattern at a speed that equals the input clock frequency times the
pattern width; the serialized pattern is then reconstructed identical at the receiving side of the
transmission line by means of a serial to parallel conversion. AGATA GTS may greatly benefit of
the technological solutions devoted to high speed serial transmissions, because, by exploiting the
use of these components, the design can be kept simple yet adequate. The solution proposed is
sketched in the following figure.
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GTS Fanin-Fanout
ATCA backplane

& GTS
' Supervisor

GTS Transceiver WEB Interface

mezzanine

Fig. 10 — GTS technology and implementation

The hierarchy is composed of five different parts:

the root node

the backplane

the fanin-fanout nodes
the fibre connections
the mezzanine interface

arwdOE

7.1 The root node

This is the global time reference source and trigger processor. It might actually split in two boards,
one for each direction of transmission. It sits in the central slot(s) of a (dual) star backplane and

sources:
a) global clock

M. Bellato — INFN Padova
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b) global timestamps (global clock counter, global event counter)
¢) fast commands
and sinks:
a) trigger requests
b) fast monitoring feedback signals
c) error notifications
A block diagram is shown in the next figure:

POWER SUPPLY E——

(Linux 0S) EEPROM Boot
ON BOARD
DC-DC
CONVERTERS t
IPMB PROTOCOL t
POWER
PC

GBIT ETHERNET SWITCH

CORE LOGIC

TriggerVaIidations CENTRAL TRIGGER
PROCESSOR

Trigger Requests

INX VIRTEXII PRO

- GLOBAL TIMING & /
BROADCAST SYSTE%CK GENERATOR

AdvanceTCA Backplane

COMMANDS MANAGER

FRONT/REAR PANEL

1 USB/FireWire

1 COM

1 GBIT ETHERNET
FAST FEEDBACK 1 LED, BUTTONS
COMMANDS MANAGER

USER INTERFACES

Fig. 11 — Block diagram of GTS root node

7.2 The backplane

Advanced Telecommunication Architecture (ATCA) is a telecom specification (PICMG3.0) [2]
aimed at standardizing the connectivity backplane for high speed, high throughput computing and
switching devices. The specification is geared towards serial switched technology and is of interest
for AGATA GTS. Backplanes following ATCA specification have dual star (or full mesh) topology
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with the two central slots as the centres of the two stars and 6+6 slots on the periphery (14
peripheral slots is also an option). Each slot is connected to the centre by means of a certain
number of matched impedance PCB traces (whose differential skew is less than 10ps) and routed
to sustain a bit rate in excess of 3 gigabits/s per pair.

7.3 The Fanin-fanout nodes

These nodes act as splitting-combining nodes. When splitting, they replicate the information
originated in the root node in each of the channels that they address; when combining, they merge
the information originated in the crystals and send it to the root node. Each node is actually a board
sitting in one of the 12 peripheral slots of the ATCA backplane and addresses 16 crystals. A block
diagram of the board is show in the following figure:

WirtexIl PRO
Main FPGA
Virtexll PRO I
Ser
DeSer
Power Supply

Fig. 12 — Block diagram of GTS fanin-fanout module

7.4 The fibre connections

Long distance transmission, noise immunity, galvanic isolation and low bit error rate (BER) will
benefit from the use of serial optical transceivers and fibre connections between each channel of
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each crystal.

7.5 The mezzanine interface

This is the block diagram of the GTS interface at the crystal level (or any ancillary detector). It
decodes the information originated from the root node in one direction and encodes the information
originated in the crystal in the opposite direction. The board is centered around a Xilinx Virtex2pro-
XC2VP7-FF672 FPGA which hosts the custom logic for GTS operation. Figure 13 shows the main
functional blocks of the card.

SFP
transceivers Time to Digital
4x Converter

Temperature
sensor
v VY -
—
LED SDRAM
2X
6X - >

& —

Flash ROM Delay Lines
1x XC2VP7-6 FPGA | ’ 2X

' S

A\ 4

BOOJXROM - <«— PLL Filter
T y
132 L——»| JTAG header

LLP 1O
Mictor connectors

Ethernet | @—

TP-10/100

Fig. 13 — Block diagram of GTS mezzanine interface

The board features:

M. Bellato — INFN Padova

A Xilinx Virtexll-pro XC2VP7-FF672-6 field programmable gate array with 8
serializers/deserializers (rocketlO’s) capable of 3.125Gb/s operation and an embedded
PowerPC cpu.

Up to four pluggable optical transceivers interfacing the rocketlO channels of the FPGA to
the fiber tree of the GTS system

128Mbytes of RAM and 16Mbytes of flash ROM for the embedded PowerPC
microprocessor and operating system support

A flash ROM for FPGA configuration

Two programmable digital delay lines for phase adjustment of the GTS global clock

A high performance PLL with very low loop bandwith for jitter removal of the GTS clock
A twisted-pair Ethernet channel for slow control operation

Two mictor-type connectors for Local Level Processing and Ancillary Detector interfacing
A time-to-digital converter for time-of-flight pulse measurements during GTS global clock
phase equalization procedure.
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A picture of the board is show in figure 14. Actually two implementations are shown, with one and
four optical transceivers.

FX =200 - OFC - 65063
B0 MHz /100 Mz

B0 MHz [ 100 MHe
DATE GODE 0420

7

FX 200 - DFC ~B5063
B0 Wiz /100 MHz
0 MHz / 100 Miz
DATE CODE D420

Fig. 14 — Picture of the GTS mezzanine interface

The form factor adheres to the Common Mezzanine Card (CMC) standard.

7.5.1 GTS Mezzanine operation

The basic tasks that the mezzanine fulfils are listed below:

e It must reconstruct the global GTS clock, 48bit timestamp, level 1 trigger validations and
global commands coming from the GTS root node through the fiber and a rocketlO channel
into the FPGA.

e It must source the reconstructed global clock, 48bit timestamp and global commands to the
LLP or ancillary node through the mictor connectors.

e It must feed the root node with a 1 microsecond paced heartbeat messages (“idle”
commands) to be used in the central trigger processor.

e It must provide an Ethernet based slow control connection.
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e It must provide a mechanism for setting the reconstructed global clock to an arbitrary phase
in a 10 ns interval.

e It must source the reconstructed global clock with a sufficiently low phase noise so as to be
readily used for multi-gigabit transceivers operation by the LLP or ancillary node.

e It must provide a mechanism for accepting, tagging and storing local trigger requests
coming from the LLP or ancillary node according to a well known, fixed latency handshake
protocol.

e It must route tagged trigger requests, status informations and trigger throttle control
commands originating from the LLP or ancillary node to the GTS root node via a multi-
gigabit transceiver channel and optical transceiver.

e It must implement the trigger matching algorithm, that is correlating trigger validation tags
coming from the root node with stored trigger requests and in case of matching or rejection,
it must inform the LLP or ancillary node according to a well known handshake protocol.

e It must provide a mechanism for measuring the round trip times of pulses originating in the
GTS root node and reaching the Digitizers clock distribution boards for the purpose of
phase equalization at the Digitizers nodes.

e It must provide all the necessary resources for the internal CPU to run a high level
operating system with a full TCP/IP network connection.

Hence, the role of the GTS mezzanine as global synchronization and control agent becomes
evident.

7.5.2 A VHDL model of the GTS Mezzanine

As stated before, the role of the Xilinx FPGA in the mezzanine is to host both the glue logic for
interfacing the board hardware resources and the custom logic for the value added operations
listed above. The following figure shows a block diagram of this logic. Actually the diagram hides a
hierarchy of blocks, each taking care of a basic subtask, and deeply relating each other by means
of signals. The hierarchy is a graphical representation of an underlying vhdl model that is
synthezisable for the Virtexll-pro technology. The aim of the model is also to provide a tool for
checking the correctness of mezzanine operation by means of simulation. In fact, the model is part
of a broader simulation strategy whose target is to develop and deploy a software framework for
the validation of the whole GTS tree.

Appendix D reports an expanded view of the hierarchical block diagram, together with a detailed
explanation of the interplay among the different subblocks.

Fig.15 shows the top level interface of the mezzanine vhdl model (“GTS_TOP”) interfaced, by
means of two complementary pairs (“fiber_in" and “fiber_out”"), to the root node model (“ROOT")
which acts as a testbench exerciser. The task of the root node model is to provide the necessary
setup informations (reset commands) and 8-bit coded timestamp pattern to the mezzanine and
subsequently to validate all trigger requests coming from it, thus emulating a multiplicity 1 trigger
condition. The red-coloured signals put in evidence the LLP-side interface, whose name, width,
direction and electrical standard has been completed specified with a LLP document [ ].

The full model is browsable at the web site : http://agata.pd.infn.it in the GTS reserved section.
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RED SIGNALS <=> MICTOR CONNECTORS

fiber_in p
fiber_in n

trigger_validation
local_trigger (1:0)

trigger_request (1:0)
msg_in (7:0)
msg_strobe (1:0)
backpressure

reject_window = 256 clock cycles

Fig. 15— Top level block diagram of the FPGA operation, together with its testbench
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8. Phase equalization of GTS clocks

The GTS clock, together with its associated timestamp, constitute the time reference for the whole
AGATA system. In each crystal, a replica of the main GTS clock, sourced through a dedicated
GTS interface mezzanine, feeds the analog-to-digital converters for digitization of segments
signals from the charge preamplifiers. The same clock feeds also the communication devices that
transfer the relevant information from the crystals up to the local level processing hardware.
Moreover, as the whole data acquisition process relies totally on timestamps for the event building
process, it is easy to understand that the GTS system must source replicas of its main clock and
timestamp that are time aligned at each crystal level. Failing to do so would imply a number of
consequences, the most obvious of which is the incorrect time tagging of event fragments and
hence incorrect event building, but also potentially incorrect trigger processing. Hence, the problem
of clock phase equalization is a crucial issue in AGATA.

The reasons behind the misalignment of clock phases among different crystals are multiple. To cite
a few there are: different PCB trace lengths, different fiber lengths, different propagation delays of
active devices, different routes inside programmable logic devices, different process-voltage-
temperature corners of active devices, different equalization fifo’'s depths of serializer-deserializer
(serdes) devices used throughout the GTS system and many others. While a detailed model of
clock phase mismatches is beyond the scope of this document, from what stated above it is
obvious that we need to devise a method for diagnose and take care of phase misalignement. An
analysis of the problem shows that the contributions to the phase mismatch can be divided in four
categories:

Type of Contribution Reason
1 Fixed PCB trace lengths, propagation delays, ...
2  Static Equalization fifo's of serdes devices
3  Slowly changing Temperature, optical phase dispersion, ...
4  Rapidly changing Power supply ripple, ...

Table 2: Contributions to phase mismatch.

While the contributions that fall in the first category can be measured once, those falling in the last
three categories must be diagnosed at run-time and fixed with a fast and automated procedure, so
that the contribution to the global system inefficiency is negligible.

In AGATA, two different methods of phase equalization are currently under investigation:

8.1 Continuous resets method

The situation is the following: in the root node of the GTS tree the global clock and associated
timestamp are generated and broadcasted to end nodes. In the end nodes the global clock is
reconstructed and phase locked with the clock of the root node but with an unpredictable phase.
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Mezzanine Root node
- - < < T
MGT Opt Fiber

- > R

Fig. 15 — Root node — End node pair with loopback

The main reason of phase uncertainty is contributions of type 2, e.g. due to the nature of clock data
recovery circuit (CDR) of serdes devices. By putting a loopback in one end node, from the root
node we measure the round trip time of a pulse and try to devise a method from which we can
safely assume that the downlink and uplink channels are symmetric and hence the measurement
(divided by two) equals the time of flight of a pulse from the root node to that end node. By
repeating the measurement for each end node we will know how to setup programmable delay
lines at the end nodes in order to reach phase equalization for all crystals.

From laboratory test, we can basically assume that the phase of recovered clock at one end node
is almost uniformly distributed in one clock period. If we take the phase of recovered clock as a
random variable, its probability density function looks like in figure 16

A PO

uT

»
»

I
t1-T/2 t1 t1+T/2 t

Fig. 16 — Ideal probability density function of recovered clock phase at the end node

Now if we consider the transceiver pair with loopback, as in figure 15 and we consider the phase of

the recovered clock at the root node as a random variable, we might assume that it is the sum of

two identical variables (as long as contributions of type 1 to phase mismatch have been minimized

by design).
1

Root tx

A
\ 4

Root rx

Fig. 17 — Global clock and recovered clock at the root node

The channels are in fact mutually independent because the transmitter clock is independent from
the recovered clock and viceversa, so the probability density function should look like:
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Fig. 18 — Ideal probability density function of recovered clock phase at the root node

t

In order to obtain the single channel latency dividing the total round trip time (RTT) by two, we
have to look for a situation of maximum symmetry between the channels. The idea is to perform
several reset-and-measure cycles until the RTT measure is close to the expected maximum or
minimum. When this happens one can safely assume that the channels times of flight are
respectively both close to their maximum or minimum and we can divide by two the RTT value to
obtain the individual channel latency.

8.1.1 Test results

The test setup is illustrated in the following figure.

P1

100 MHz OSC
“ROOT” “NODE”
q 100m FIBRE RECOV. CLOCK
DATA —9—> TX1 RX2 < RDOUT CLK
PATTERN |
< I SHIFTER /FILTER

RDOUT CLK RX]. TX2

DATA OUT <

RocketlO MGT RocketlO MGT DATA

P2

oscilloscope

ASYMMETRY = [TD-TU|/ 10 [ns]

TD TU

A
A 4
A
\ 4

A
A\ 4

Fig. 19 — The test stand for the continous resets method.

M. Bellato — INFN Padova 27



Draft version 1.3 — 11 November 2005

A data pattern P1 is injected at the root node in the downlink. At the end node the same pattern
(P2) is recovered from the serial stream and its time of flight is measured by means of an
oscilloscope (triggered by the time of occurrence of P1). The pattern is loopbacked towards the
root node, recovered (P3) and its time of flight measured in the same way. In figure 20 the latency
distributions of the downlink (TD) and uplink (TU) in a clock cycle are reported. In figure 21 the
latency distribution of the loop (TL) in a clock cycle is reported.
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Fig. 20 — Latency distribution of downlink (TD — upper) and uplink (TU — lower).
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Fig. 21 — Latency distribution of the loop (TL).
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By defining the degree of asymmetry as:

TD-TU|

Asymmetry = 10(ns)

one can plot the degree of asymmetry of the loop versus the global latency as in figure 22:
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Fig. 22 — Loop asymmetry versus global latency.

The measurements shown in figure 22 have been obtained by performing more than 11.000 reset-
and-measure cycles on the test stand of figure 19 with an automated procedure. This picture
deserves some useful comments:

v" Two minima of asymmetry are evident at the extremes of the global latency interval
[1677..1696] ns. This means that, at those minima (which correspond respectively to the
global minimum and maximum of the loop latency) the downlink and uplink latency are
almost equal and the two channels (uplink and downlink) are symmetric. Hence, we can
estimate the end node clock phase with a measurement procedure performed at the root
node.

v The resolution of the measurements is 500 ps, which corresponds to the clock cycle of the
serial stream.

v' There is a certain number of points outside the [1677..1696] ns interval. These points are
due to computation errors in the automation procedure (less than one hundred out of more
than eleven thousands).

v' There is a pedestal in the plot greater than zero, e.g. the minima of asymmetry at the
extremes of the interval are not zero. In other words there is a fixed contribution to
asymmetry, e.g. a systematic error due to contribution of type 1 (PCB traces and cable
mismatches, propagation delays impairments, impedance mismatches, etc.). This type of
contribution can easily be measured from a plot like the one in fig. 22. Once subtracted, the
plot in fig. 22 becomes a perfect triangle and the minima at the extremes of the interval
become global minima.

Due to the nature of our test stand, the measurements shown in fig. 22 took more than two hours
to be performed. While an investigation is currently under way to speed up the measurement
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process, it is evident that it is in the nature of the method itself to perform repetitive resets of
serdes devices until a preferred latency is measured. That is, the method can be time consuming
because we cannot foresee the time it takes to converge. For this reason it is not obvious that it
might be used online, for periodic calibrations of the whole GTS distribution tree at beam time.

8.2 Direct Measurement

8.2.2 Test Results
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Appendix A. GTS Mezzanine Interface Pin-out

The GTS mezzanine interface pin-out is specified as:

Name Direction No. of bits Description
Clock100 Out 1 Global clock
Clock100des Out 1 Global clock phase adjustable
Timestamp Out 48 Global clock counter
Ev_counter Out 16 Event counter
Scl In 1 I2C interface
Sda In/Out 1 I2C interface
Trigger_valid Out 1 Level 1 trigger validation
Trigger_req In 1 Trigger Request
EvCnt_str Out 1 Event Counter strobe
BrdCst_in Out 8 Broadcast Command bus from root node
BrdCst_in_str Out 1 Broadcast bus strobe
BrdCst_out In 8 Broadcast Command bus towards root node
BrdCst_out_str In 1 Broadcast bus strobe
Error Out 1 Transmission error
Master_reset In 1 Mezzanine reset
Ethernet[0-3] In/Out 4 Ethernet connection
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Appendix B. Costs

B.1 Single Crystal prototype costs.

For single crystal prototype operation only 1 GTS Mezzanine card (working in
emulation mode) is needed. GTS Mezzanine costs are detailed in the Pre-Processing
Hardware Specs. [ ]

B.2 Demonstrator costs.

For demonstrator operation (15 crystals) the following items are needed:

e 15 Mezzanine interfaces (costs included in the Pre-processing Hardware Specs

§)

e 1 Fanin-fanout board (16 channels)
¢ 1 Root Node (possibly splitted in two — see before)
e 1ATCA crate

Root node(s) Qty Unit price | Cost
Pcb Layout 2 €5000 €10000
Pcb 2 €1000 €2000
Virtexll pro 2 €2000 €4000
Memory 2 €10 €20
Flash mem 2 €100 €200
LVDS serdes 24 €20 €480
Power supply 2 €100 €200
Connectors €300 €600
PLL 2 €120 €240
Misc 2 €300 €600
Total €18400
Fanin-Fanout Qty Unit price | Cost
Pcb Layout 1 €5000 €5000
Pch 1 €1000 €1000
Virtexll pro 1 €2000 €2000
VirtexIl pro V70 2 €500 €1000
Memory 1 €10 €10
Flash mem 1 €100 €100
Optical Transceivers | 16 €250 €4000
Power supply 1 €100 €200
Connectors €300 €300
PLL 2 €120 €240
Misc 1 €300 €300
Total €14150
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Assuming that, at the prototyping stage, two runs are needed to obtain a working system,
then the costs for hardware for the demonstrator are (€18400 + €14150) X 2 = €65100 for
the boards and €20000 for one ATCA crate. In total €85100.

Instrumentation & | Qty Price
Software

TDR test Jig 1 €4000
Differential Probe 1 €4000
DSO 4GHZ 1 €45000

2" ATCA crate 1 €20000
Optical Power Meter | 1 €2000
ATCA extender 1 €2000
Xilinx Dev Kit 1 €5000
Xilinx ISE 1 €500/year
Synplify Pro 1 €1000/year
VisualHDL 1 €2000/year
Synopsys 1 €2000/year
Total €87500

NRE costs for Xilinx IP Cores are detailed in the Pre-Processing Hardware Specs.
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Appendix C. Timescale and manpower

Timescale and manpower for the GTS Mezzanine are detailed in the Pre-Processing Hardware
Specs [1]. It is reported here for sake of completeness:

C.1 GTS interface mezzanine

Task Time Manpower
(months) | (1 man)

PCB layout & Assembly | 6 1

Testing

FPGA development 9 1

Software

Total 15 1

For the root node and fanin-fanout boards the following figures hold:

C.2 Root Node

C.3 Fanin-fanout Node

Task Time Manpower
(months) | (1 man)

PCB layout & Assembly | 4 1

Testing 1 1

FPGA development 12 1

Software 7 1

Total 24 1

Task Time Manpower
(months) | (1 man)

PCB layout & Assembly | 4 1

Testing 1 1

FPGA development 12 1

Software 7 1

Total 24 1
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Appendix D. The GTS Mezzanine VHDL model

The GTS mezzanine is the leaf node of the Global Trigger and Synchronization tree and plays the
role of an intelligent interface between the front-end electronics and the trigger complex.

The following is a description of the vhdl circuit structure that resides in the field programmable
gate array in the mezzanine.
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Fig. D1 — Top level block diagram of the mezzanine model.

At the top level is the interface between the root node and the mezzanine on one side and between
the mezzanine and the front-end electronics on the other side. For the sake of clarity the
LLP/ancillary interface signals are coloured in red. The model depicted in Fig. D1 shows two
complementary pairs that connect the root node and the mezzanine in both directions. The pairs
are the inputs and outputs of a couple of multi-gigabit transceiver pair connected back-to-back and
simulated in the model by means of an encrypted SmartModel core distributed by Xilinx.

The model is missing the description of (and hence the interaction with) the slow control part, e.g.
the microprocessor, which is an integral part of the mezzanine and takes care of crucial tasks as
the global clock phase equalization and online monitoring. All the relevant setup informations are
given to the mezzanine through signals or messages issued from the root node.
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Fig. D2 — Internal block diagram of the mezzanine model.

The figure D2 shows the internal of the GTS mezzanine block. Each sub-block takes care of a
given task and coordinates its activity with the others. Below is a list of the blocks and a description

of the basic function they accomplish.
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D.1 T_valreject_ctrl.
(top left of the fig D2)

LLF bus handshake

gelk
trigger_walidation
resst g
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walidate e
> wal_rej_tag (7:0)

rejecta | T _wvalreject_ctrl
= - _

valLreject_tag (4700

230
v _mum o il

wvalidate_ack

reject_achk

Fig. D3 - The T_valreject_ctrl block.

It is in charge of communicating a trigger request validation or rejection on the LLP/ancillary bus
together with the relevant informations needed for this task, e.g. the 48bit validation or rejection tag
that identifies the request and the event number in case of validation. It drives the val_rej_tag(7:0)
bus according to a predefined handshake mechanism upon request of the two incoming signals
“validate” or “rejecta” that are driven by the trigger_match block (middle right side of the picture).

TimeA = 18,784,855,000fs
0,000,000fs |18,780 000,000fs 18,800,000,000fs 18,820,000,000fs 18,840,000,000fs 18,860,000,000fs 18,880,000,000fs 18,900, 0¥

Fig. D4 — Trigger validation waveforms.

TimeA = 6,748,632,988fs
6,640,000,000fs 6,660,000,000fs 6,680,000,000fs 6,700,000,000fs 6,720,000,000fs |6‘740,000,00's 6,760,000,000fs 6, 7F

&

By v e

Fig. D5 — Trigger rejection waveforms.

D.1.1 T valreject_ctrl internal block diagram

The simple state machine reported in the following figure highlights the expected behaviour of this
block. Upon an external decision of either validation or rejection of an event one of the two possible
branches is followed, producing on the val_rej_tag bus the sequence of event identifier + event
number (validation) or only the event identifier (rejection).
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Fig. D6 — T_valreject_ctrl state machine.
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D.2 RTX.
(top right of the fig. D2)
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Fig. D7 — The RTX block.

It manages the high speed serial communication channel with the Root node (it sinks the fiber_in
signals and sources the fiber_out signals). It decodes the 48bit timestamp pattern, the global clock
(gts_clk) and all the messages coming from the root, e.g. the global reset (reset signal) and the
trigger validation (L1A signal) for the time being. The RTX communicates with the root by means of
bidirectional messages that are Hamming encoded for increased reliability. In the uplink direction it
sources trigger request messages to the root node with a payload specifying an identifier for each
individual request. It sources also periodically an “idle” message for use in the central trigger
processor.

D.2.1 RTX internal block diagram

The block in violet hides the simulation core of the multi-gigabit transceiver. The 16bit receiver bus
rxdata is split in (top left part of the figure) the least significant byte (Isb) and most significant byte
(msb). The Isb carries the encoded timestamp and gets decoded by passing through 2 lookup
tables and a t_decode block that implements the decoding algorithm (due to D. Bazzacco). The
msb carries Hamming encoded commands: to retrieve these commands the msb is passed
through a decoder block (cmd_dec) that retrieves from the stream the validation informations (L1A
and event number) the global reset and the commands to be routed to the bcast_out bus. A
cmd_enc block is in charge of encoding commands in the upstream direction (txdata bus of the
transceiver). For the time being the encoded commands are trigger requests, idle messages and
the backpressure throttle.

4,420,000,000fs |4,440,000,000fs |4,40,ooo,uuufs 4,480,000,000fs 4,500,000,000fs 4,520,000,000fs 4,540,000,000fs 4,560,000,000fs 4, ¢

02 fiver inn 1

ﬂﬁl fiber in p 0

ﬂﬁl gts_clk 1
= timestamp lsw 'h 0198 0194 0195 0196 0197 DlEF 0199 019A 0198 o19¢ 019D 019E 019F 01A0 01A1 01A2 01A3 01k

Fig. D8 — Global clock, timestamp and gigabit transceivers waveforms.
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Fig. D9 — RTX block diagram.
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D.3 FIFO_L1A.
(middle left of fig. D2)

trigger validation's fifo
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L1A_fifo_wr_en wr_data_courtt

fifo_l1a

Fig. D10 — The FIFO_L1A block.

This block is a first-in-first-out memory that stores temporarily incoming trigger validations (and
their identifiers) waiting to be served by the trigger_match block.
It's a de-randomizing memory with a depth of twenty locations.
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D.4 DPRAM_tstamp.
(low left of fig. D2)

freeaddr (4:0)

checkaddr (4:0)

t (4700
clear (47:0)

T_reguest_mem _wr_e

Fig. D11 — The DPRAM _tstamp block.

dpram_tstamp

trigger request's memory
(TR

T_request_mem_dout (47107
doutb = u

Ita true dual-port memory holding the trigger requests and their identifiers originated by the
LLP/ancillary front-end electronics. The pending trigger requests and associated tags are kept in
this memory until validation or rejection or timeout expiry. As the order of arrival of trigger
validations is not guaranteed (possibly not time-sorted), the possibility exists of accessing this
memory not consecutively, hence the need of a random access memory type.
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D.5 FIFO_FREELIST.
(low right of fig. D2)

FIF2_FREELIST

storeaddr (4:0)
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rd_sn empty T _request_mem _full

T_request_mem_empty

Tl e S e T_reguest_wr_data_court (4:00

o _En

fifo_freelist

fifo of TEM free slots

Fig. D12 — The FIFO_FREELIST block.

For the reason stated above, there is a need to keep a list of free location addresses in the
DPRAM_tstamp memory. The FIFO_FREELIST is a first-in-first-out memory holding this list.
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D.6 Trigger_match.
(middle right of fig. D2)
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trigger matching

Fig. D13 — The Trigger_match block.

This is a state machine in charge of checking if there is correspondence between the current (the
oldest actually) trigger validation and any of the pending trigger requests. In case of match or
timeout a proper action must be undertaken (e.g. validation or rejection of that event must be
notified on the LLP/ancillary bus by means of the T_valreject_ctrl block). To do this, the
Trigger_match block reads the L1A fifo memory and if a validation exists scans the
DPRAM_tstamp to look for the corresponding trigger request. It may happen that, during the scan,
one or more trigger requests originated at a time that exceeds a fixed timeout are found.

In both cases this must be notified to the LLP/ancillary bus by asserting the appropriate signal
between “validate” and “rejecta”.

D.6.1 Trigger_match internal block diagram

The overall state machine that governs the sequencing of operations is shown in the following
figure D14. After reset the FIFO_FREELIST is filled with free location addresses of the
DPRAM tstamp memory. During normal operation the machine continuously scans the
DPRAM_tstamp memory looking for expired trigger requests to discard. But when a trigger
validation is arrived, the machine scans the DPRAM_tstamp memory looking for trigger requests
that match the validation. The sequence of operation in this case is shown in fig. D15.
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Scan trg request memory in search
for a match

Fig. D14 — The Trigger_match state machine.

D.6.2 Scan_mem_llainternal block diagram

Upon arrival of a trigger validation this sequence is entered. Each trigger request found in the
DPRAM_tstamp memory is compared with the validation tag and one of three possible choices is
evaluated (trigger request has matched, trigger request is expired, trigger request is more recent
than validation and must be left in place for future validations).

preload counter with mem depth

Ce1 =
crt<=std lagic_vector(unsigned(crity+1),
en=0;

Trigger requefst is expired

Three choices

In case of match or discard:
Clear current Trg req memory location
Store the current location in the free locations fifo

Fig. D15 - The scan_mem_|1a state machine.
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D.7 T_request_ctrl.
(low middle of fig. D2)
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Fig. D16 — The T_request_ctrl block.

The block manages the handshake with LLP/ancillary electronics after an incoming trigger request.
A tag is associated with any given trigger request and broadcasted on the local_tag bus. The same
tag is also stored on the DPRAM_tstamp memory after having asked for a free location to the
FIFO_FREELIST fifo. Note that the tag associated with any given trigger request is actually the
48bit global clock counter value latched at the time of the request. Figure D17 highlights the
handshake sequence on the LLP bus that follows a trigger request.

27,000,000,000£s 27,100 ¥

Fig. D17 — Trigger request waveforms.

D.7.1 T_request_ctrl internal block diagram

The simple state machine reacts upon a trigger request made on the LLP/ancillary interface. It
latches the current value of the 48bit global timestamp and stores it in the DPRAM_tstamp memory.
Immediately after, it sends the same timestamp, 8bit at a time, on the local_tag bus for use as an
event identifier in the LLP/ancillary electronics.
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Fig. D18 — T_request_ctrl state machine.
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